대규모 전력 생산의 어려움, 낮은 효율, 새로운 미생물 개체군의 발견, 생물 공정 등의 해결해야 할 과제들이 아직 많지만, 미생물의 신진대사를 통해서 전기를 생산한다는 미생물 연료전지 기술이 빠르게 개발되고 있다. 미국 펜실베니아 연구팀은 미생물 연료전지에 사용될 수 있는 고표면적의 탄소 섬유 양극을 개발하여 전기의 대량 생산을 위한 하나의 실마리를 발표하였다(GTB2007030852).


]또한 펜실베니아 주립대학은 연구원들은 서로 다른 역할을 하는 박테리아를 이용해 셀룰로오스를 분해하여 전력을 생산하는 미생물 연료전지를 만들었다. 이들은 셀룰로오스를 분해하고 발효시키는 박테리아와 발효 물질들로 생존하는 박테리아를 동시에 이용함으로써 문제를 해결하였다(GTB2007070674).


실제 이용을 위한 기술적 과제들이 하나, 둘씩 해결되는 중에 스페인의 연구팀이 박테리아들의 밀집시켜 성장시킬 수 있는 새로운 방법을 고안하였다. 이들의 연구는 박테리아 셀을 지탱할 수 있는 탄소 나노튜브 골격(Carbon nanotuve scaffold)들을 미생물 연료전지에서 전극으로서 사용하는 것이다.
 
스페인의 마드리드 재료과학 연구소(Madrid institute of materials science, ICMM-CSIC)의 프란시스코 델 몬트(Francisco del Monte)와 마리아 페레르(Maria Ferrer) 및 동료들은 박테리아가 성장할 수 있는 마이크로 채널 구조(Micro-channel structure)의 다벽(Multi-wall) 탄소 나노튜브 골격들을 만들었다.

 

미생물 연료전지들은 박테리아가 폐수와 같은 물질들로부터 화합물들을 산화시킴으로써 수소 또는 전자를 생산하고 양극-음극 시스템을 통해서 전기를 발생시킨다는 기초 개념으로 작동한다. 몬트는 탄소 나노튜브들에 고정화시킨 단백질들과 효소들이 메탄올 연료전지들 내의 바이오센서들로서 이용되며 미생물 셀의 설장을 위해서 탄소 나노튜브들이 적당한 지지체가 된다면 미생물 연료전지들의 전극으로도 사용할 수 있을 것이라고 말했다.


몬트의 연구팀은 탄소 나노튜브 골격들에 박테리아를 성장시키기 위하여 2가지 방법들을 연구하고 있다. 하나는 박테리아 배양기내에 탄소 나노튜브를 직접 담그는 것이며 다른 하나는 미리 준비된 탄소 나노튜브 골격들에 박테리아가 먹고 성장할 영양 성분들을 고정화시키는 것이다.
 
 탄소 나노튜브를 담그는 방법은 높은 박테리아 밀집도를 제공하나 탄소 나노튜브 골격 표면에 소수의 층들이 만들어진다. 후자는 나노 구조 전체에서 박테리아가 성장하게 된다. 몬트는 탄소 나노튜브 전체에서 박테리아를 배양시키는 것을 매우 바라지만 현재는 탄소 나노튜브 골격이 형성되는 과정에서 박테리아의 생존을 향상시키는 것에 집중하고 있다고 말했다.


이탈리아 트렌토 대학(University of Trento)의 물리화학자인 클라우디오 델라 볼프(Claudio Della Volpe)는 몬트 연구팀의 접근 방식의 장점들은 3차원 구조내에 박테리아를 캡슐화하는 효율과 속도, 방법의 단순화에 있으나 3차원 구조가 물질 공정을 위한 활동적인 이송 메커니즘을 확보하지 않았으며 본질적으로 느린 확산에 의존하게 되는 단점이 있다고 말했다.
 
폐수 등과 같은 환경 오염물을 생물학적으로 처리함과 동시에 전력을 생산할 수 있는 미생물 연료전지는 큰 관심을 받고 있다. 특히 최근에 이루어진 셀룰로오스 이용 방법과 박테리아의 밀집군을 만들어 전력 생산량을 증가시키는 기술의 개발은 미생물 연료전지의 상용화를 더욱 앞당기게 될 것이다(전문가 의견).
 
 

정보출처: KISTI『글로벌동향브리핑(GTB)』

171 유기 광전변환 소재/바이오센서 산학 워크샵 공동 진행
170 박막 태양전지 시장전망
169 양조장 폐수로 부터 전기 에너지를 발생시키는 미생물 연료 전지(microbial fuel cell)
» 미생물 연료전지에 이용되는 탄소 나노튜브
167 전기 생산을 증대시키는 새로운 미생물 연료전지
166 미생물연료전지의 연구동향
165 <일본시장조사보고서> 2008년판 태양전지 부재 시장의 현상과 장래전망(일본어판)
164 표면 변형을 통한 미생물 연료 전지의 향상
163 새로운 고효율 색소증감 태양전지 개발
162 [신기술소개] 쇼와전공 등 3社, 대면적 고성능 플라스틱 태양전지 소자 개발
161 [지금 해외에서는]텐덤형 태양전지 개발
160 고효율 고분자태양전지 길 '연다'
159 프라운호퍼 연구소, 다중접합 태양전지의 경이적 광전변환효율 39.7% 달성
158 제1회 염료감응태양전지(DSSC) 산업체 워크숍 및 간담회’
157 美 과학자들 실리콘 이용, 태양 전지 효율성 높이는 방법 개발
156 차세대 저가형 신재생 에너지 신기원 열어
155 값싸고 만들기 쉬운 플라스틱 태양전지를 개발하는 데 성공
154 NIMS, BN/Si 헤테로 다이오드 태양전지의 시작(試作)에 성공!
153 경기도와 ‘플렉트로닉스-KPF社’ 투자협약체결
152 컬러입는 태양전지 뜨거운 각축전

LOGIN

SEARCH

MENU NAVIGATION